
Flame Fractal Variation Guide
Version 1.0, by Rick Sidwell

Several guides have been made to help people
understand and compare the many variations available
for use in flame fractal programs like Apophysis and
JWildfire. They typically take a base flame and show
the results of the different variations on it. This guide
takes a different approach: Rather than using a
common base flame, it uses one that best shows the
effect of the particular variation. The hope is that it
will make it more clear just what each variation does.

This guide is far from comprehensive! Besides only
explaining about a third of the variations, it just shows
the effect of a single application. Interactions with
other variations, use cases, and above all, the effect of
iterations are all beyond the scope of this guide. The
variations selected for inclusion were basically the
ones I understood and could describe in a quarter to
half page. No consideration was given to how useful a
variation is in creating fractal art. It’s a subjective
consideration anyway, but some of the variations
included here will rarely be used, while other very
useful ones are not listed.

For each variation, the name is shown along with a
note whether it is 2D or 3D, and how it works. A
normal variation will transform the (x,y) or (x,y,z) point
to another (x,y) or (x,y,z) point. A “blur” will ignore the
input points (so no starting point is shown) and
generate a shape. A “half blur” will also generate a
shape, but requires some input points, and will often
preserve their colors in the output. For 3D variations,
the effect on z is described: “transforms z” means the
z value is modified, “sets z” means z is set, ignoring the
starting z value, and “passes z” means z is just passed
with no change except multiplication by the variation
value (so it is technically a 2D variation).

Also for each variation, the support is shown for that
variation in commonly used flame fractal programs:
Apophysis 2.09, Apophysis 7X version 15B (the last
version before the 3D paradigm was changed),
Apophysis 7X version 16, JWildfire 2.00, and Chaotica
1.5.2. Possible values are “yes”, “no”, and “dll”
(meaning a plug-in can be used). The plug-in name, if
applicable, is listed below the table. Note that every
built-in variation in Apophysis 7X version 16 will pass z;
this is not noted in the guide.

The variations are listed in alphabetical order of their
base names, which is the name after removing the
prefixes “pre_”, “post_”, “dc_”, and “Z_”. Most
variations with these prefixes have a normal version as
well, so this puts the versions together. But some
don’t, so for example, post_rotate_x is located where
“rotate_x” would be if it existed.

It is worth noting that pre_ and post_ variations will
have no effect by themselves; they need to be
combined with a normal variation. Similarly, some
variations affect only z, not x and y. In these cases,
linear is used along with the variation under study to
produce a useful result. (The linear variation itself just
passes (x,y) without modification, so is not shown in
the guide.)

For most variations, the variation value is just
multiplied by the result, affecting only the size. This is
useful when combining variations on one transform to
set the proportional amount of each. But some
variations use the variation value as part of their logic.
In this guide, a variation value of 1 is used unless
noted otherwise.

Many variations have variables that can be set to
adjust the effect. Not all variables are always
described, but when they are, the names are shown in
italics. The values of the variables used for the
examples are listed for each variation, so it should be
possible to reproduce any of them using the
accompanying test flame file. All but blurs are made by
adding a final transform to one of the test flames
(adding linear as well when it is needed as discussed
above). For 3D variations, the pitch of each example is
listed.

My primary purpose in assembling this guide was to
help my own efforts in understanding the bewildering
array of variations available for flame fractals. I can’t
promise I got everything correct, especially for the
variations where no source code was available. I’ve
learned a lot putting this together. I hope others will
find it useful as well.

Rick Sidwell, November 2014

arch (2D blur)

2.09 7X15B 7X16 jwf ch

no no no yes yes

Variation values less than 2 give a partial
curve; 1 gives right half; value of 2 shown.

Z_arch (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

ZArch.dll
Uses variable instead of variation value

auger (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

auger.dll

Creates a wave effect that gets
stronger further from the origin.
Variable sym controls how much x is
affected; see the two right examples
which are the same except for sym.

Top right: sym = 0 (so x is not affected),
weight = 0.5, freq = 4, scale = 0.1

Bottom right: sym = 0.3 (mild x effect),
weight = 0.5, freq = 4, scale = 0.1

Bottom left: sym = 1, weight = 0.3,
freq = 3, scale = 0.5

The stripes have the appearance of
rippled ribbons, but that is just an
illusion; auger is 2D only.

Compare waves2, waves2b, wavesn.

bent (2D)

2.09 7X15B 7X16 jwf ch

yes dll dll yes yes

bent.dll
Doubles negative x (towards the left).
Halves negative y (towards the top).

Same as bent2 with x = 2 and y = 0.5.

2.09 7X15B 7X16 jwf ch

yes no no yes yes

blob (2D)

bipolar.dll
The interior of the unit circle is
stretched horizontally, split, and put at
the top and bottom. The rest of the
plane is turned inside-out, stretched,
and put in the middle.

The output wraps at the top and
bottom, making this variation useful
for vertical tiling.

bipolar (2D)

bent2 (2D)

bent2.dll
Scales negative x (left) and y (up) as
defined by the variables. Negative
values are allowed.

Example uses x = 0.4 and y = 2.

blob_fl.dll

Pinches the plane according to the
variables: waves is the number of pinches,
and the height varies between low and
high. The built-in version in Apo 2.09
requires an integer value for waves; the
others do not.

Top right: low = 0.2, high = 1, waves = 8

Bottom left: low = 0.9, high = 1.2,
waves = 16

Bottom right: low = -0.6, high = 0.9,
waves = 4

Compare with cardiod.

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

2.09 7X15B 7X16 jwf ch

dll dll dll no no

blob_fl (2D)

2.09 7X15B 7X16 jwf ch

no no no yes no

blob3D (3D, sets z)

A 3D version of blob. Looks the same
as blob if pitch is 0.

Example uses low = 0.1, high = 1, and
waves = 4 with a pitch of 45.

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

blur (2D blur)

A circle with a bright center. (The spot
doesn’t show with all colors.) For a
circle without the bright center, use
circleblur. See also sineblur.

pre_blur is a pre_ version of
gaussian_blur, not blur.
blur_circle is a circle without a bright
center, but different versions are
inconsistent.

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

blur_heart (2D blur)

blur_heart.dll

A heart-shaped blur. Three parameters
to vary the shape.

Left (default): p = 0.5, a = -0.6, b = 0.7

Right: p = 0.9, a = -0.3, b = 0.4

2.09 7X15B 7X16 jwf ch

dll dll dll no yes

blur_linear (2D)

blur_linear_jf.dll

Creates a motion blur effect.

Two variables:
 length – size of the blur effect
 angle – angle of the blur (in radians)

pitch=45 pitch=45

2.09 7X15B 7X16 jwf ch

dll dll yes no yes

blur_pixelize (2D)

blur_pixelize.dll

averages colors in an area to make
large square pixels.

Two parameters:
size – specifies the size of each pixel
scale – allows resizing the pixels

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

blur_zoom (2D)

blur_zoom_jf.dll

zooms from a center point outward

Three parameters:
zoom_length – length of the zoom
(0.15 for this example)
x and y – center point of the zoom

See falloff2 with type = 1.

2.09 7X15B 7X16 jwf ch

no yes yes yes no

blur3D (3D blur)

Three dimensional Gaussian blur

top view (pitch=0) side view (pitch=90)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

boarders2, pre_boarders2 (2D)

boarders2.dll, pre_boarders2.dll
Divide the plane into squares of size 1,
and make a copy of each. Shrink one
copy and keep in the middle. Poke a
square hole in the other and expand it
to make a frame around the first.
Set all three variables to 0.5 (shown
here) to make it work like boarders (its
predecessor with no variables).
See tri_boarders2 and xtrb.

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

bubble (2D/3D, sets z)

Projects the flame onto a sphere.
Bubble was a staple long before the
first 3D version of Apophysis was
developed, and has many uses even in
2D. The top example demonstrates
how it works.

But in programs that support 3D,
bubble sets z to make a true sphere
(any previous value of z is ignored).
The bottom example shows its effect
on coincentric rings, with Pitch set to
87° (nearly edge on). Eight equal sized
rings in the middle (the purple one
goes from1.75 to 2) transform to the
top half. These are then repeated in
reverse with proportional sizes (the
red one goes from 8 to infinity, and
can’t really be seen in the original)
transform to the bottom half.

See hemisphere.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

bubble2 (3D, transforms z)

For the x-y plane, bubble2 works just
like bubble except that there are two
variables, x and y, that scale the result.

But bubble2 transforms z based on the
variable z, unlike bubble which sets it
to form a sphere. This means other
transforms must have already set a z
value for it to transform.

The examples shown here are all at
pitch 90, so the vertical axis is z instead
of y. With variable z = 0, the z value is
just passed on (bottom left; x changes
but z does not). When z is positive (top
right, z = 0.5), the top and bottom
halves of the flame are separated by a
gap. When z is negative (bottom right,
z = -0.5), the top and bottom halves
overlap.

pitch=90

pitch=90 pitch=90

pitch=90

pitch=87 pitch=87

butterfly (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

butterfly.dll

A four-way pinch effect that resembles
a butterfly.

bwraps7 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

bubble_wrap_S7.dll

Overlays the flame on a grid of bubbles,
like bubble wrap. Note this is 2D only; z is
ignored.

Top right uses the default parameters:
 cellsize = 1 matches the sample’s size
 space = 0 makes the bubbles touch
 gain = 2 for normal bubbles
 inner_twist = 0 so no inner twist
 outer_twist = 0 so no outer twist

Bottom right shows space and twist:
 space = 0.5 puts space between bubbles
 inner_twist = 1 to twist the insides

Bottom left reduces the gain:
 space = 0.5 (same as bottom right)
 gain = 1 flatten bubbles a bit
 inner_twist = 1 (same as bottom right)

Other versions: bwraps and bwraps2 are
nearly the same as bwraps7, but the gain
variable works differently. These versions
also have pre_ and post_ variations.

cardiod (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

cardiod_mf.dll

Applies a cardiod curve, pushing the
flame outward from the center. The
single variable, a, determines the
number of petals. The default, 1, gives
a standard cardiod. Shown is a = 3.

Compare with blob, which pushes from
the outside in.

checks (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

checks.dll

Divides the flame into a checkerboard
(square size is determined by the size
variable). Shifts half of the squares up
and left, and the other half down and
right according to the x and y variables
(negative values are allowed and shift
the other direction).

Top right shows basic operation with
size=1 (the size of the squares in the
original), x = 0.4, y = 0.3, and rnd = 0.
The outside middle squares moved up
and left; the corners and center moved
down and right.

Bottom right shows the effect of the rnd
variable, set to 0.25 here.

Bottom left has a much smaller square
size: size = 0.1, x = 0.252, y = 0.176, and
rnd = 0.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

circleblur (2D blur)

circleblur.dll

A flat circle (no bright center like blur
can have).

A similar variation, blur_circle, does
the same thing but different versions
are not consistent.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

circlecrop, pre_circlecrop,
post_circlecrop (2D, passes z)

circlecrop.dll
Crops a flame to a circle. Variables allow
adjusting the circle size and position.
Variable scatter_area specifies the size
of the border. Set variable zero to 1 for
no border at all. Example uses radius = 1,
x = 0, y = 0, scatter_area = 0.2, zero = 0.

See crop, cropn.

circlize (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

circlize.dll

Maps squares that are centered at the
origin with sides parallel to the x and y
axes to circles.

See squarize, which does the opposite.

circus (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

circus.dll
Scales the unit circle and the rest of
the flame separately according to the
variable scale. When less than 1, the
circle is shrunk and the rest is
expanded, leaving a ring in the middle.
When more than 1, the opposite
occurs and the two overlap. The
example uses the value scale = 0.85.

collideoscope (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

collideoscope.dll
Divides the top and bottom halves of
the flame into num wedges each, then
rotates each wedge according to a, the
fraction of a complete rotation. The
part rotated off the edge is cycled back
to the other side. Adjacent wedges
rotate opposite directions.

The top example uses num = 2, so the
original is divided into four wedges,
and a = 0.25 so each is rotated a
quarter turn. So the green and yellow
sections form one wedge that is
rotated clockwise.

The bottom example uses num = 4 and
a = 0.5, so divides the original into 8
wedges, each rotated halfway. For
example, one wedge is made of an
orange rectangle and a red triangle
(half of the respective squares). The
rotation makes the bottom of the
rectangle and the long side of the
triangle adjacent and rotated halfway
through the wedge.

conic (2D half-blur)

2.09 7X15B 7X16 jwf ch

no no no yes yes

conic2.dll
Makes a conic section shape (ellipse,
parabola, or hyperbola), with the focal
point at the origin.

The eccentricity variable determines the
type (1 for parabola, less for ellipse, more
for hyperbola).

Setting the holes variable to 0.5 results in
two shapes, the main one on the left and
one turned 180° on the right, as in the
bottom two examples. Setting to 0 or 1
shows only the left or right shapes, and
going past that creates a hole at the focal
point (a hyperbola includes both shapes,
and already has a hole at the focal point).

(The plugin Conic.dll has the variation
name conic, but is different from these.)

conic2 (2D half-blur)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

eccentricity=0.8, holes=0

eccentricity=0.8, holes=0.5 eccentricity=2, holes=0.5

cpow (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

cpow.dll
The name means Complex Power; it treats
each point of the flame as a complex
number and rasies it to the complex
power specified by the variables r and i.

With i = 0, decreasing r from its default of
1 splits the plane along the negative x axis
and rotates the top and bottom away
from each other, much like folding a
Japanese fan (top right, where r = 0.5 and i
= 0). Increasing r does the opposite,
causing an overlap.

With r = 0, setting i will convert wedges to
rings (bottom left, where r = 0 and i = 0.5).

Setting both r and i converts wedges to
spirals (bottom right, where r = 0.5 and i =
0.5).

A julian effect (see julian) is also available
with the variable power (not shown).

Compare Juliac.

crackle (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

avCrackle.dll

A flexible (but slow) blur that can
generate a variety of interesting textures.

Top left: cellsize = 0.8, power = 0.1,
distort = 0, scale = 1, z = 0

Top right: cellsize = 0.8, power = 0.1,
distort= 0.4, scale = 1, z = 0

Bottom left: cellsize = 0.6, power = 1,
distort = 0, scale = 0.8, z = 0

Bottom right: cellsize = 0.6, power = -0.3,
distort = 0.4, scale = 0.6, z = 0

The z variable changes the distortion, and
has nothing to do with 3D or the z axis.

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

crop, pre_crop, post_crop (2D,
passes z)

crop.dll
Crops a flame to a rectangle. Variables
allow adjusting the rectangle sides.
Variable scatter_area specifies the size
of the border. Example uses left = -1.3,
top = -1, right = 1, bottom = 0.7,
scatter_area = 0.1.

See circlecrop, cropn.

2.09 7X15B 7X16 jwf ch

dll dll dll no yes

cropn (2D, passes z)

cropn.dll

Crops a flame to a polygon. Variables
allow adjusting the power (number of
sides, negative for a hollow crop) and
radius. Variable scatterdist specifies the
size of the border. Example uses
power = 5, radius = 1, scatterdist = 0.1.

See circlecrop, crop.

cross (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

CrossVariationPlugin.dll

Divides the flame diagonally into four
wedges, then turns each wedge inside-
out.

The variations cross , cross2, and Z_cross
all work exactly the same.

curl (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Think of the plane as a series of coincentric
rings, as shown here but extending out to
infinity.

As c1 is increased, the rings shift left and
uncurl, deforming first to a vertical line,
then curling back into rings on the right,
turning that side inside-out.
Top right: c1 = 1, c2 = 0, showing the state
when the ring at distance 1 from the origin
is a line. When c1 is negative, the same
thing happens but the opposite direction.

As c2 is inceased, the rings stretch vertically
then the middle starts to pinch in and the
top and bottom spread out and rotate
around until they cross then rejoin at the
ends with top and bottom flipped.
Bottom left: c1 = 0, c2 = 0.5, showing the
state when blue ring ends are crossing and
the shrinking magenta ring touches the
expanding green one. When c2 is negative,
the action happens side to side.

Bottom right: c1 = 1, c2 = 0.25

Pre_ and post_ versions also available.

curl3D (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Three variables, cx, cy, and cz, work
similarly to the curl c1 variable, but in
the x, y, and z dimensions. There is no
analog to c2. The example shows a side
view of the coincentric rings from the
curl example rotated upward to show
the effect of cz. cx = 0, cy = 0, and cz = 1.

Post_ version also available pitch=90 pitch=90

curve (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

curve.dll
Puts a dimple in the flame; it can be
horizontal, vertical, or both. Variables
xamp and yamp specify the amplitude
(positive for right or down). Xlength
and ylength specify the width.

Example has xamp = 0, yamp = 0.8,
xlength = 1, and ylength= 0.25

cylinder (2D/3D, sets z)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Curves the flame into a vertical
cylinder. In 3D versions, it sets z
(ignoring any previous value).

pitch=75 pitch=75

diamond (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Warps flame into a diamond shape
that fits in a unit circle. The example is
carefully chosen to have minimal
overlap, but as the original flame gets
larger, diamond will warp it to fit the
diamond shape.

disc (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

disc3d (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

disc3d.dll

Changes x and y just like disc, but also
transforms z according to the distance
from the origin. The example shows
the effect on a flat flame.

pitch=75 pitch=75

droste (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

droste.dll
Takes a ring with radii r1 and r2 and
unrolls it into a rectangle, rotates and
shrinks the rectangle, then rolls it back
up, now into a spiral. It does this for
the entire flame, so only the ratio r2/r1
matters. The example uses r1 = 1 and
r2 = 4.975. See escher which uses
different math to produce the exact
same effect.

eclipse (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

eclipse.dll

Shifts a circle in the middle of the
flame right, filling in the gap with a
mirror image of the circle. Variable
shift controls how far the circle is
shifted: 0 for no shift, 1 for halfway, 2
for all the way, negative to shift left.

Example has shift = 0.7.

Morphs the plane into a unit circle by
turning wedges into arcs. The upper right
quadrant starts at the bottom and arcs
clockwise around the outside; the upper
left quadrant starts at the top. The
bottom half does the same on the inner
half. The example has radius 1 so it stops
before the arcs overlap to illustrate this;
larger flames continue rotating around
the circle. Compare idisc and wdisc.

edisc (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

edisc.dll

Morphs the flame into a circle based
on the distance of each point from the
center. The original flame here
(truncated by necessity) starts with
eight rings of varying color, which are
then repeated in reverse order with
increasing width (so red goes from 8 to
infinity, orange goes from 4 to 8, etc.).

elliptic (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

elliptic.dll

Stretches rings within distance 1 from
the origin into ellipses. Splits rings
further out and stretches them into
progressively straighter lines. The
width is the variation value.

Epispiral (2D half blur)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

Epispiral.dll

A mathematical curve that isn’t really a
spiral. If n is odd, there are n sections,
otherwise twice n. (Actually, there are
always twice n sections, but when n is
odd half the sections overlap.) Setting
thickness to 0 results in a line blur
(except in 7x16); otherwise a shape.
Setting holes puts a circle in the center
filled with holes and points according
to the other variables.

Top right: n = 4, thickness = 0.5,
holes = 0
Bottom right: n = 8, thickness = 1,
holes = 1
Bottom left: n = 9, thickness = 0,
holes = 0

escher (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

escher.dll
Implements Escher’s Map by treating
each point of the flame as a complex
number and raising it to a power
determined by the variable beta. The
example shows beta = 0.5.

See cpow (allows using an arbitrary
complex number) and droste (same
effect using different math).

ex (2D)

2.09 7X15B 7X16 jwf ch

yes dll dll yes yes

ex.dll

I’ve heard this variation is called ex
because it often transforms the plane
into an X shape.

exponential (2D)

2.09 7X15B 7X16 jwf ch

yes dll dll yes yes

exponential.dll

Polar conversion (kind of opposite of
polar). Distance is e^(x-1) and angle is
pi*y. This converts vertical lines to
rings and horizontal lines to wedges.

eyefish (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Generates a fisheye effect, expanding
points close to the center and
contracting points further away.

fisheye does the same, but it also
swaps x and y in the result.

falloff2 (3D, transforms z)

2.09 7X15B 7X16 jwf ch

dll dll yes yes dll

falloff2.dll, post_falloff2.dll,
pre_falloff2.dll

Blurs the plane outside a sphere defined
by x0, y0, z0, and mindist. Three types are
available: set type to 0 for linear blur (top
right), 1 for radial blur (bottom left), or 2
for Gaussian blur (bottom right). Blur
strength is controlled by scatter (the
default, 1, is used in all examples).

For types 0 and 2, mul_x, mul_y, and
mul_z control the strength for each axis
(set to 1, 1, and 0 for the right examples).
For type 1, mul_x controls the ray blur
(center outward), mul_y controls circular
blur around the z-axis, and mul_z controls
circular blur around the x-axis (set to 0, 1,
and 0 for the bottom left example).

Although a full 3D variation, it works fine
in 2D versions; but keep mul_z = 0 or your
flames may look different if opened in a
3D version.

Supercedes falloff and post_rblur.

fan2 (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Divides the plane into wedges, then
rotates them right or left. Variable x sets
the size of the wedges. When y is 0,
wedges on the left side are rotated left
and wedges on the right are rotated
alternately. Increasing y makes more
wedges rotate alternately and decreasing
y makes more rotate the same direction.

Top right: x = 0.5 (makes 16 wedges) and
y = 3.534, which is large enough to make
all the wedges alternate direction.

Bottom right: x = 0.2 (makes 100 wedges)
and y = 0. The alternations on the right
show mostly in the jagged edges. The left
side wedges are evenly rotated left.

Bottom left: x = 0.707 (makes 8 wedges)
and y = -1.57. The red and green wedges
swapped, and the rest rotated left,
leaving a space at the top and making the
green and magenta wedges overlap.

Supercedes fan.

flipy (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

flipcircle.dll

Flips points on the right side of the flame
top to bottom.

flower (2D half blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

FlowerVariationPlugin.dll
Makes a flower shape; there are twice the
variable petals petals, except that if it is
odd half of the petals will overlap, giving
only petals petals. Variable holes puts
holes in the petals and affects the size.

Example has petals = 4 and holes = -0.25.

Compare epispiral; it uses similar math.

flux (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

flux.dll

Converts radial lines to curved flux lines.

Variable spread is a scaling factor; in the
example spread = -0.2.

flipcircle (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

flipcircle.dll

Flips points within a circle top to bottom.
Radius of circle is the value of the
variation.

foci (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

foci.dll

Wraps the plane around a horizontal
cylinder, then tapers the ends and bends
them away to form a U, looking up from
the bottom.

In the first example, the vertical lines are
infinite and map to smaller circles as they
get away from the center. The
intersection of the middle horizontal and
vertical lines is at infinity (or think of it as
“behind” the view point so not visible).

The second example is more complex, but
better shows how foci works. The infinite
vertical lines are slanted slightly, so when
wrapped around the cylinder they spiral
around. These spirals can be seen when
the cylinder is bent and tapered.

See unpolar.

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

gamma (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

gaussian_blur, pre_blur (2D blur)

A fuzzy circle with a bright center and a
ring in the middle. (The spot and ring
don’t show with all colors.)

Compare blur and blur3D.

pre_blur is a pre_ version of
gaussian_blur (not blur as the name
would imply).

Converts each point to polar coordinates
and uses the angle for the y coordinate,
converting wedges to horizontal ribbons.
The gamma function is used to compute x
from the distance. The example uses
escher for the original, so the wedges
aren’t straight, but it illustrates the math.

Compare polar.

gdoffs (2D, passes z)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

gdoffs.dll

Gdoffs is short for “grid offset”, and it can
produce several effects based on a grid,
including the corrugation, crosshatch, and
plaid type patterns shown here. Variables
delta_x and delta_y control the amount
of distortion; effective range is from 0 (no
distortion) to just under 5. Only the larger
of area_x and area_y is used, so it’s
easiest to just set area_y to 0, as is done
for the examples here. If square is 1, then
delta_y will be ignored and delta_x used
for both dimensions.

Top right: delta_x = 0.4, delta_y = 0,
area_x = 2.5, gamma = 1.

Bottom left: delta_x = 1, delta_y = 0.75,
area_x = 1, gamma = 1.

Bottom right: delta_x = 0.5, delta_y = 0.5,
area_x = 1, gamma = 6.

glynnia (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

glynnia.dll

The unit circle maps to the left side of the
result, in two places: scrunched and
rotated to form an inner half-circle, and
turned inside-out and rotated to form the
background. The rest maps to the right
side: scrunched and rotated to form the
background, and turned inside-out and
rotated to form the inner half-circle.

glynnia2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

glynnia2.dll

The top half is scrunched and rotated to
form the bottom left of the result, and
flipped and turned inside-out to form the
top left. The bottom half is flipped and
scrunched to form the top right half, and
flipped back and turned inside-out to
form the bottom right.

GlynnSim1 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

GlynnSim1.dll
The GlynnSim variations pass the part of
the plane outside radius intact, and
replace the inside with an everted copy of
the outside. Variables contrast and pow
control the density balance between
inside and outside. Compare with spher.

GlynnSim1 converts the area inside radius
to a circle of radius radius1 with its center
at distance radius and angle Phi1 (in
degrees). It has a hole in the center with a
size defined by thickness (from 0, no hole,
to 1, just the circle outline).

Top right: Default values, radius = 1,
radius1 = 0.1, Phi1 = 0, thickness = 0.1,
pow = 1.5, and contrast = 0.5.

Bottom left: radius = 1.2, radius1 = 0.2,
Phi1 = -90, thickness = 0.8, pow = 5, and
contrast = 0.1.

Bottom right: radius = 0.5, radius1 = 0.3,
Phi1 = 120, thickness = 0.4, pow = 1, and
contrast = 1.

GlynnSim2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

GlynnSim2.dll

Similar to GlynnSim1, but instead of a
circle it makes an arc between Phi1 and
Phi2 (in degrees) with thickness thickness.

Example uses radius = 1, thickness = 0.1,
contrast = 0.5, pow = 1.5, Phi1 = 120, and
Phi2 = -90.

GlynnSim3 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

GlynnSim3.dll

Similar to GlynnSim1, but instead of a
circle it leaves a space at radius with
thickness thickness. (Variable thickness2 is
not used.)

Example uses radius = 0.75, thickness =
0.1, thickness2 = 0.1, contrast = 0.5, and
pow = 1.5.

Half_Julian (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

Half_Julian.dll

Like julian, but doesn’t replicate the result
to fill the hole. Unlike julian, power does
not need to be an integer.

Compare cpow with i = 0 and r = 1/power.

handkerchief (2D)

2.09 7X15B 7X16 jwf ch

yes dll dll yes yes

handkerchief.dll

Transforms circles centered at the origin
to ellipses. Circles (like the blue one in the
example) whose radius is a multiple of
π/2 will remain circles; circles (like the
yellow one) whose radius is an odd
multiple of π/4 become diagonal lines.
The overall effect is reminiscent of folding
a handkerchief.

post_heat (3D, transforms z)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

post_heat.dll

Applies a combination of three wave
functions: theta is circular around the
origin, phi is up and down (z-axis), and r is
in and out from the origin (which usually
shows up as a density variation). The
examples show them individually for
clarity.

There are three variables for each wave
that control the period (smaller values for
higher frequencies), phase (0 to π), and
amplitude (set to 0 for none of that kind
of wave).

top right: phi_amp = r_amp = 0,
theta_period = 0.5, theta_phase = 0, and
theta_amp = 0.3

bottom left: theta_amp = r_amp = 0,
phi_period = 1, phi_phase = 1.5, and
phi_amp = 0.3

bottom right: theta_amp = phi_amp = 0,
r_period = 1, r_phase = 1.5, r_amp = 0.4

pitch=30

pitch=30 pitch=30

pitch=30

2.09 7X15B 7X16 jwf ch

dll yes yes yes yes

hemisphere (3D, sets z)

hemisphere.dll

Projects the flame onto a hemisphere.
It is like bubble, but with a half sphere
instead of whole one.

pitch=87 pitch=87

hexes (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

hexes.dll

Divides the plane into hexagon tiles and
rotates and scales each in place.

cellsize – the size of each hexagon
power – distorts each cell using a power
function (1 for normal, 0 for outline only)
rotate – factor (0 to 1) to rotate each tile.
If not a multiple of 1/6 (0.1667), the
contents will be distorted to fit (see
bottom right example).
scale – scale factor for each hexagon; less
than 1 will leave spaces; greater than 1
will make them overlap.

Top right: cellsize = 0.5, power = 1, rotate
= 0.166, scale = 0.98

Bottom right: cellsize = 0.5, power = 1,
rotate = 0.0833 (1/12), scale = 0.98

Bottom left: cellsize = 0.4, power = 3,
rotate = 0, scale = 0.95 (no rotation to
demonstrate distortion effect of power)

horseshoe (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Takes the top half of the plane and
stretches it around from the left side to
the right, and takes the bottom half and
stretches it around the opposite way. The
two halves normally overlap, although the
contrived example leaves blank space so
the effect on both halves can be seen.

The name horseshoe may come because
it transforms straight lines into U shapes.

hyperbolic (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Transforms circles centered at the origin
to ellipses so the plane is mapped
between hyperbolas. The y-coordinate
and quadrant of the original point are
preserved. The main diagonals (gray in
the example) map to the boundary
hyperbolas.

idisc (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no yes

idisc.dll

Morphs the plane into a unit circle by
turning wedges into arcs. Unlike disc, this
one doesn’t overlap. Wedges in the top
and bottom halves map to counter-
clockwise arcs in the corresponding half
of the result.

Compare disc, wdisc.

inflateZ_1 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_1.dll

Sets z based mostly on y, but with a sort
of saddle shape in the center. The
example is rotated 60° right (yaw=60) to
show the profile.

pitch=45 pitch=45

inflateZ_2 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_2.dll

Tilts the plane, bringing the top left up
and the bottom right down. But as with
all of the inflateZ variations, only z is set;
linear is used in these examples to pass x
and y.

pitch=45 pitch=45

inflateZ_3 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_3.dll

Warps z to give a strong 3-dimensional
shape. The example is rotated 50° left
(yaw = -50).

inflateZ_4 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_4.dll

Duplicates the plane and makes two
interleaved helix shapes. On one, the top
left is raised a lot and the bottom left is
lowered a bit; on the other, the bottom
left is raised a bit and the top left is
lowered a lot. The example is rotated 30°
left (yaw = -30).

pitch=60 pitch=60

pitch=78 pitch=78

inflateZ_5 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_5.dll

Sets z to give a gentle 3-dimensional wave
shape. The example is rotated 60° right
(yaw=60) to show the profile.

pitch=45 pitch=45

inflateZ_6 (3D, transforms z only)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

inflateZ_6.dll

Sets z to give a rolling shape with a fold
along the negative x-axis. The example is
rotated 60° left (yaw = -60) to show the
profile.

pitch=30 pitch=30

julia3Dz (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Works like julian (with julian_dist = 1). But
it also scales z to map to a horn shape.
When power is larger, the “barrel” of the
horn gets wider. When power is negative,
the fractal is turned inside-out. When
pitch is 0, it appears the same as julian.

The original shown here has z set to 1.
Larger values make it larger. Negative
values make the shape point down. When
z is 0, it stays 0.

Top right: power = 2
Bottom right: power = 5
Bottom left: power = -3

A related variation, julia3Dz_fl, allows
non-integer values for power.

pitch=80 pitch=80

pitch=80 pitch=80

julia3D (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Works like julian (with julian_dist = 1), but
maps the result to a 3D shape, scaled by
z. When power is positive, the middle part
is stretched in and up, forming a bowl
shape. When viewed face on (pitch =0), it
is similar to julian but the middle is filled
in. When power is negative, the outside
edge is stretched up and in, forming a
dome shape with a turned-in lip. When
viewed face on, it is very different from
julian since the middle is filled in.

The 3D shape is scaled by z, which is 1 in
the examples here. When the z value is
negative, the bowl is flipped from what is
shown here. If z is 0 throughout the
original, then julia3D is exactly the same
as julian.

Top right: power = 3
Bottom right: power = 13
Bottom left: power = -4

A related variation, julia3D_fl, allows non-
integer values for power.

pitch=80

pitch=80

pitch=80

pitch=80

juliacomplex (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

juliacomplex.dll

Similar to Juliac, but the spiral effect from
Im_p is applied to each repetition, giving
a pinwheel effect.

Top right: Re_p = 2.5 = 5/2, so there are
five repetitions. Im_p = 2, so each one
spirals from green in the center to cyan.
dist = 1 so no distortion.

Bottom left: Re_p = 2.3 = 23/10, so there
are 23 repetitions. Im_p = -3, so each one
spirals from cyan in the center to green
on the outside. This is difficult to see since
most of it is overlapped by the next
repetition. dist = 1, so no distortion.

Bottom right: Re_p = -6, so there are six
reversed and inside-out repetitions. Im_p
= 2.5, so each one spirals from green to
cyan, but the first few colors are
overlapped by the next repetition. dist =
1.5, making the result slightly larger, and
actually causing the overlap in this case
since Re_p is an integer.

Juliac (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

Juliac.dll

Like julian, but the julian_power variable
is a complex number with real and
imaginary parts (variables re and im) Re
can’t be zero; it doesn’t need to be an
integer, but the repetitions will overlap if
it isn’t, as shown in the top right example.

When im is not zero, the result will have a
spiral shape, as shown in the bottom
examples.

Top right: re = 2.5, im = 0, dist = 1
Bottom right: re = 3, im = -5, dist = 1
Bottom left: re = 0.5, im = 33, dist = 0.125

The math here is similar to cpow with
cpow_r = 1/re, cpow_i = im/100, and
cpow_power = 1, except that cpow
doesn’t add repetitions or have a dist
variable.

juliac works the same as horseshoe when
re = 0.5, im = 0, and dist = 0.5.

juliaq (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

juliaq.dll
Divides the plane into divisor wedges and
repeats each of them power times around
the origin, thus converting a shape with
divisor edges into one with power edges. It
is the same as julian when divisor = 1. The
example has power = 10 and divisor = 8.

3D and post_ versions ara also available
(julia3Dq has an effect similar to julia3D).

julian (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Cuts the plane along the negative x axis
and squishes it around so it only takes up
1/power of the original space, then
repeats that power times to fill up the
gap. The top right example shows this
with power = 3 and dist = 1. The result is
also shrunk radially, making it smaller and
opening a hole in the middle. The
distortion variable dist can stretch it back
out, filling in the hole but distorting the
shape, as in the bottom right example
with power = 5 and dist = 3.5. Values of
dist less than one will shrink it further.

When dist is negative, the result is turned
inside-out. When power is negative, the
result is both turned inside-out and
reflected across the x axis (see the
bottom left example, with power = -3 and
dist = 1). When both are negative, the
result is just reflected.

Supercedes julia, which is julian with
power = 2 and dist = 1 except that most
versions swap x and y. Variation julian_fl
allows non-integer values for power.

juliascope (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Similar to julian, except that the
repetitions alternate direction. When
power is even, the alternate repetitions
match (as shown here; note how the
green and cyan wedges are doubled);
otherwise one repetition will not match
exactly.

The example has power = 4 and dist = 1

lazysusan (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

lazysusan.dll

Twists and turns a circle with a radius of
the variation value. The center is set by
the variables x and y. It is turned
clockwise by spin radians (0 is no turn, π is
halfway around, 180°), and twisted
according to twist.

When space is positive, the rest of the
plane is expanded to leave a space
around the circle. When negative, the rest
of the plane is shrunk, causing overlap at
the boundary.

Top right: spin = 3.14159, space = 0.1,
twist = 0
Bottom right: spin = 1.5708, space = 0,
twist = 1.25
Bottom left: spin = 5.5, space = 0,
twist = 0, x = 0.3, y = -0.3

lazyjess (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

lazyjess.dll
Similar to lazysusan, except a regular
polygon with n sides is used instead of a
circle. If spin is not set to make the
corners line up exactly, they will be cut
off; corner controls the appearance of the
uncovered space (it takes values 1 to n).

The example uses n = 4, spin = 1.25,
space = 0.1, and corner = 1

lazyTravis (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

LazyTravis.dll
Spins the square centered at the origin
with size 1 according to spin_in, which
ranges from 0 (no spin) to 2 (spins all the
way around). Also spins the rest of the
plane according to spin_out, deforming it
to make it fit a square..

The example uses spin_in = 0.875,
spin_out = 0.25, space = 0

Lissajous (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

LissajousVariationPlugin.dll
Generates a Lissajous curve (named after
a 19th century French mathematician who
studied them). The classic Lissajous shape
is controlled by variables a and b, or more
precisely the ratio between them.
Variable d controls the phase difference
between them (-π to π), and e is the
thickness of the line (keep small for best
results). Variable c adds diagonal
movement to the result, as shown in the
bottom left example, which would be a
circle if c was 0 (a and b equal, with phase
π/2).

Variables tmin and tmax control the
extent of the generated line.

Top left: tmin = -3.14159, tmax = 3.14159,
a = 2, b = 3, c = 0, d = 0, e = 0.03
Top right: tmin = -3.25, tmax = 3.25, a=
2.02, b = 3, c = 0, d = 0, e = 0
Bottom right: tmin = -30, tmax = 30, a =
3.125, b = 2, c = 0, d = 0, e = 0
Bottom left: tmin = -25, tmax = 25, a = 2,
b = 2, c = 0.02, d = 1.57, e = 0

loonie (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

loonie.dll
Turns the center of the plane inside-out,
distorting it. Areas are preserved; in the
example, the area of the green ring
before is the same as the area of the
green circle after. A circle has been added
straddling the boundary to show the
distortion effect. The radius of the loonie
effect is the value of the transform (1
here).

Mandelbrot (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

MandelbrotVariationPlugin.dll

Generates the shape of the iconic
Mandelbrot set. Note that Apophysis is
not well suited for exploring that set; use
an escape-time fractal program with
extended precision and better coloring
algorithms for that.

modulus (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

modulus.dll

Divides the plane into rectangles, then
stacks all of the rectangles on the center.

For the example, x = 1.75 and y = 1.

murl (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

murl.dll
Based on curl. Think of the plane as a
series of coincentric rings, divided into
power lobes. As c increases, the spaces
between the lobes pinch in and the lobes
stretch out and rotate around until they
cross and converge in the center.

Top right: c = 0.4 and power = 3

Bottom right: c = 0.25 and power = 6

Bottom left: c = 0.75 and power = 15

A post_murl version is also available.

murl2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

murl2.dll

A refinement of murl that creates less
overlap with higher values of power. For
the example, c = 0.25 and power = 6;
compare with the bottom right example
for murl right above it, which uses the
same values.

nBlur (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

nBlur.dll

Generates regular polygons with quite a
few variables to control various options
such as stripes and a hole in the center.
The examples show some of the
possibilities; the particular variables each
exemplifies are in bold.

Top left: numEdges = 5, numStripes = 0,
ratioHole = 0, circumCircle = 0, and
equalBlur = 0

Top right: numEdges = 8, numStripes = 3,
ratioStripes = 1.25, ratioHole = 0,
circumCircle = 0, and equalBlur = 1

Bottom left: numEdges = 4, numStripes =
0, ratioHole = 0.75, circumCircle = 0, and
equalBlur = 1

Bottom right: numEdges = 6, numStripes =
0, ratioHole = 0.75, circumCircle = 1, and
equalBlur = 1

ngon (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

ngon.dll

Stretches circles into polygons, with the
option to turn them inside-out (like
spherical).

Variables:
sides – Number of sides for the polygon.
The examples here all use 4.

power – Controls the expansion of the
plane. When 0 (bottom right), it is normal
size. Decreasing it expands the outside
and shrinks the middle (not shown).
Increasing it does the opposite (bottom
left, power = 0.9). When 1, it degenerates
into an outline, and continuing turns the
plane inside-out (when 2, top right, it is
the same size as spherical).

circle – Rounds the sides of the polygon.
When 1 (all examples here), the sides are
straight.

corners – Defines the shape of the
corners; 1 is normal (all examples here).

noise (2D half blur)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Maps each point on the plane to an
ellipse. Points on the main diagonals map
to circles; points on the x and y axes map
to horizontal or vertical line segments.

In the example, all the circles of the same
color map to the same ellipse. For
example the four green circles on the
main diagonals map to the green circle in
the result.

npolar (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

npolar.dll

When parity is 1, this is like julian (not
shown). When 0, it does a polar
conversion (setting x to the angle and y to
the distance), followed by a julian
followed by another polar conversion
(this time setting x to the distance and y
to the angle).

With n = 1 (top right), wedges are
converted to arcs. The outer part of the
original goes to the middle part of the
result, and the left part of the original
goes to the top part of the result.

With n = -1 (bottom right), the top and
bottom halves of the result are mirrored
both left to right and top to bottom.

With n = 2 (bottom left), the result is
repeated twice and made smaller. Note
how the outer unit is split between the
top and bottom.

pitch=70 pitch=70

onion (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no no no yes no

Maps the plane to a 3D onion shape; a
sphere with an exponential on top. The
radius of the sphere is the value of the
transform, and the pinch point in the
result is twice that.

The two variables centre_x and centre_y
set the center; the example has them
both at 0 (the default).

ortho (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

ortho.dll

Variable in ranges from 0 to 2, and
controls shifting of the unit circle. When 0
or 2, there is no effect. As it increases
from 0, the circle shifts down, with the
bottom looping back around to the top.
When it decreases from 2, the circle shifts
up. A value of 1 (top right) gives
maximum effect.

Variable out does the same to the rest of
the plane, but in opposite direction, and
as it shifts it turns inside-out. Again,
maximum effect is at 1 (bottom right).

Top right: in = 1, out = 0
Bottom right: in = 0, out = 1
Bottom left: in = 1.5, out = 0.5

oscilloscope (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

oscilloscope.dll
Flips the plane in a sine wave shape
across the x axis.

frequency is the frequency of the wave;
higher values give more waves.
amplitude specifies the height of the
wave.
separation specifies how far the top and
bottom parts are separated from each
other. When equal to amplitude (top
right), the top and bottom halves barely
touch. When higher (bottom right), there
is space between the two halves.
damping, when 1, damps the wave on
both sides (bottom left).

Top right: separation = 0.75,
frequency = 1, amplitude = 0.75,
damping = 0
Bottom right: separation = 1,
frequency = 3, amplitude = 0.5,
damping = 0
Bottom left: separation = 0.8,
frequency = 2, amplitude = 0.9,
damping = 1

ovoid3d (3D, transforms z)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

ovoid3d.dll

Like spherical3d, but has variables to scale
x, y, and z. The example is raised so that z
is 0.5, and has variables x = 1.5, y = 1, and
z = 0.5.

parabola, parabola2 (2D half blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

parabola2.dll
Generates a parabola shape, using the
distance from the center of existing
points as a parameter. To show the whole
parabola, the input was scaled to set the
outer edge of the circle to π. Variables
width and height are both 1 for this
example.
The built-in version is named parabola;
the plugin version is named parabola2.

pitch=80 pitch=80

perspective (2D)

2.09 7X15B 7X16 jwf ch

yes no no yes yes

A 2D variation that transforms the plane
as if viewed from a 3D vantage point. The
variable angle controls the viewing angle,
from 0 (face on) to 1 (edge on).

phoenix_julia (2D)

2.09 7X15B 7X16 jwf ch

dll dll dl yes dll

PJulia.dll

Works the same as julian, except there
are two variables, x_distort and y_distort
that change the proportion of different
wedges with relation to each other. The
example shown here has x_distort = 1.5
and y_distort = 0.

pie, pie_fl (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

pie.dll, pie_fl.dll
Generates a figure with slices wedges
separate by spaces (pie.dll requires slices
to be an integer; the others do not). The
proportion of wedge to space is set by
thickness, which can range from 0 (lines,
right) to 1 (solid circle, same as blur); left
example is 0.5. Variable rotation (in
radians) allows the figure to be rotated.

pie3D (3D blur)

2.09 7X15B 7X16 jwf ch

no no no yes no

Generates a figure like pie, but with the
wedges curved . Same as pie when
pitch = 0.

The examples both have slices = 8,
thickness = 0.75, and rotation = 0. The
one on the left has a variation value of 1;
the one on the right has a value of 3 to
show the undulating 3D shape.

pitch=45 pitch=45

polar (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Converts each point of the plane to polar
coordinates (angle and distance), then
treats them as rectangular coordinates,
mapping the angle to x and the distance
to y.

Wedges are thus converted to vertical
stripes (as shown), and rings are
converted to horizontal stripes (not
shown).

polar2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

polar2.dll

Similar to polar, but uses slightly different
math to make the vertical extant
symmetrical . (Specifically, the log of the
distance is used for y instead of the raw
distance.)

popcorn2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

popcorn2.dll

Puts horizontal and vertical jags at the
sides of each square in the plane, creating
a unique shape. Variables x and y control
the size of the jags; larger values create
larger jags. Variable c controls the size of
the squares; larger values work with
smaller squares.

Two types of shapes can be made;
depending on whether x and y have the
same sign (top right) or different signs
(bottom right).

The right examples have c = π to specify
squares of size 1. The bottom left has c =
π/2 to specify squares of size 2, putting
the distortions in the middle of the outer
squares where they are more visible.

Top right: x = 0.1, y = 0.1, c = 3.142
Bottom right: x = 0.1, y = -0.1, c = 3.142
Bottom left: x = 0.2, y = 0.05, c = 1.571

Supercedes popcorn.

popcorn2_3D (3D, sets z)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

popcorn2_3D.dll

A variant of popcorn2, it halves the x-y
size and adds a z component by splitting
the plane along the negative x axis
(turned here for clarity) and moving half
up and half down.

The example uses x = 0.1, y = 0.1, z = 0.1,
and c = 3.1. pitch=75, yaw=60 pitch=75, yaw=60

power (2D)

2.09 7X15B 7X16 jwf ch

yes dll dll yes yes

power.dll

Rotates the plane 90° clockwise, distorts
it, and turns the original left half (now the
top half) inside out.

pressure_wave (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

pressure_wave.dll

Imagine the plane is a rubber sheet, and
scrunch it together vertically at regular
intervals (like a curtain, but stay in two
dimensions). Do the same horizontally.
The example here has x_freq = 2 and
y_freq = 2.

pRose3D (3D half blur)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

pRose3D.dll

A 3D version of the polar rose curve.
There are lots of variables! No attempt is
made to explain them here, but a few
examples are shown.

Top right: l = 4, k = 4, c = 0, z1 = 1, z2 = 1,
refSc = 1, opt = 1, optSc = 1, opt3 = 0,
transp = 0.5, dist = 1, wagsc = 0, crvsc = 0,
f = 3, wigsc = 0, offset = 0

Bottom right: l = 6, k = 4, c = 0, z1 = 2,
z2 = 1, refSc = 1.2, opt = -2, optSc = 1,
opt3 = 0, transp = 0.2, dist = 2.5,
wagsc = 0, crvsc = 0, f = 3, wigsc = 1,
offset = 0

Bottom left: l = 5, k = 5, c = 0, z1 = 0.5,
z2 = 0.5, refSc = 2, opt = -1, optSc = 1,
opt3 = 0, transp = 0.125, dist = 3,
wagsc = 2, crvsc = -3, f = 6, wigsc = 1,
offset = 0

pitch=60 pitch=60

pitch=60 pitch=60

radial_blur (2D half blur)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Maps each point on the plane to a
“swoosh” that goes to the origin and
beyond, curved according to the variable
angle, which has effective values between
-1 and 1, with 0 being no curvature.
(Other values are allowed but repeat this
range.)

The example is contrived to show how
the variation works. It has angle = 0.4.

rectangles (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Divides the plane into x by y rectangles
and flips each both horizontally and
vertically (equivalent to rotating by 180°).
If x or y is 0, the plane is divided in to
vertical or horizontal stripes and flipped
only one direction. (If both are 0, there is
no effect.)

Top right: x = 2, y = 2
Bottom right: x = 1, y= 0
Bottom left: x = 1, y = 0.5

rings2 (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Divides the plane into rings whose size
and width depends on the variable val.
When val < 1, each ring will be shrunk but
the width will increase, making the rings
overlap. When val > 1, the radius of each
ring will go negative (reflecting the ring
across the origin and turning it inside-out)
and the width will decrease.

Special cases:
val = 1: the width of each ring is the same,
but the size decreases to 0, turning the
rings into superimposed circles.
val = 1.2247: the width of each ring
matches the size of its neighbors so the
rings touch without overlapping.
val = 1.4142: degenerate case where the
width of each ring is 0

Top right: val = 0.5
Bottom right: val = 1
Bottom left: val = 1.25 (larger than
1.2247, so there are gaps between the
rings)

Supercedes rings.

ripple (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

ripple.dll

Modulates the plane using two radial
cosine waves. The wave frequencies are
determined by frequency and the
distance from the center (adjusted by
centerx, centery, and scale). The
amplitudes are determined by amplitude
and the angle from the center. The
modulation is determined by velocity and
phase, and is extrapolated by phase.

Top right: frequency = 1, velocity = 1,
amplitude = 0.3, centerx = 0, centery = 0,
phase = 0, scale = 1.75

Bottom right: shows the effect of velocity;
parameters are the same as top right
except velocity = 0

Bottom left: shows the effect of phase;
parameters are the same as top right
except phase = 1.3333

rippled (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

rippled.dll

Converts lines to ripples by manipulating
the y value (x is not changed).

A pre_ version is also available as a plugin.

rose (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

rose.dll

Tranforms the plane using the rose curve.
Note this is a true transform, not a blur
like flower and pRose3d. Some distortion
can also be done, controlled by the
variables.

The number of petals is controlled by
numer/denom; when an integer, there
are twice as many petals; half overlap
when it is odd, but the other variables
treat the overlapping petals separately so
they can be distinguished. The examples
here all have numer = 4 and denom = 1,
giving 8 petals.

The top right example has strength = 1.25
(when 1, all petals are the same size).

The bottom right example also has
strength = 1.25, but has shear_x = 0.3.

The bottom left example has strength = 1
but has turn_x = 1.

pre_rotate_x, post_rotate_x (3D)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Rotates the 3D space around the x axis.
The distance is controlled by the variation
value; 1 (shown here) means 90°.

pitch=45 pitch=45

pre_rotate_y, post_rotate_y (3D)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Rotates the 3D space around the y axis.
The distance is controlled by the variation
value; 1 (shown here) means 90°.

pitch=45 pitch=45

pre_rotate_z, post_rotate_z (3D)

2.09 7X15B 7X16 jwf ch

no dll dll no no

Rotates the 3D space around the z axis.
The distance is controlled by the variation
value; 1 (shown here) means 90°.

pitch=45 pitch=45

roundspher3D (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

roundspher3D.dll

Transforms a plane to a 3D shape as
shown. The inner part of the original goes
to the outer port of the 3D shape. But it
also takes existing z values into
consideration, so the shape will be
different if the original isn’t a flat plane.

pitch=80 pitch=80

scry (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

scry.dll

When the variation value is positive, it
turns the plane inside out, limiting it at
the value. So a line going out from the
origin would transform to a line starting
at the variation value distance and going
the other direction (towards the origin).
This is shown on the right examples with
values 1 (top) and 2 (bottom).

When the variation value is negative, it’s
the same in principle but looks quite
different. A line going out from the origin
would transform to a line starting at the
value distance and going the other
direction, but it starts opposite where it
would start if positive, so it initially goes
away from the origin. When it reaches the
point originally the value distance from
the origin, it is at infinity, and continues
coming in the other side, this time really
going towards the origin. The bottom left
example shows this with a value of -1.

scry_3D (3D, transforms z)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

scry_3D.dll

A 3D version of scry, which transforms z if
it is set and sets it if it is 0 (shown in the
examples).

Viewed face-on (pitch=0), scry_3D is the
same as scry only when the variation
value is 1. Negative values invert the 3D
shape, but not the 2D shape like scry
does.

Top right: variation value = 1
Bottom right: variation value = 1.414
Bottom left: variation value = -1

pitch=75 pitch=75

pitch=75 pitch=75

secant (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no no

SecantVariationPlugin.dll
Multiplies x by the variation value (2 in
the example), but otherwise leaves it
unchanged. Uses the trignometric secant
function to compute the y value. Since
secant will never return a value between
1 and -1, there is always a gap in the
middle. The example is scaled down from
normal to show the variation effect.

secant2 (2D)

2.09 7X15B 7X16 jwf ch

no no no yes yes

An alternative to secant that moves the
top and bottom halves towards each
other to eliminate the gap inherent in
secant.

The example uses the same scale as for
secant for comparison.

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

separation.dll

Splits the plane down the y axis, moving
each half outwards x units, but not
evenly; movement of points further from
the axis is controlled by xinside, which
ranges from mild squeezing when 0, to
stretching with a large enough negative
value, and mirroring with a large enough
positive value.

The same things happens vertically,
controlled with the y and yinside
variables.

top right: x = 1, y = 0, xinside = 0,
yinside = 0
bottom right: x = 1, y = 0.2, xinside = -0.5,
yinside = 0
bottom left: x = 1.5, y = 0.2, xinside = 1.2,
yinside = -0.5

See splits, which does does the splitting
but moves the entire half planes evenly.

separation (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no no

ShapeVariationPlugin.dll

A 2D half blur implementation of the
superformula. Some examples are shown.

Variable m is the number of corners, n1 is
the main shaping variable, n2 and n3 are
other shaping variables, a and b stretch or
contract the shape, and holes puts a hole
in the center if less than 0. (Although the
default for holes is 1, it works best to use
0 for no hole and a negative value to add
a hole. Positive values will reverse the
colors.)

Top right: m = 8, n1 = 1, n2 = 1, n3 = 1,
a = 1, b = 1, holes = 0
Bottom right: m = 4, n1 = 0.3, n2 = 1,
n3 = 1, a = 1.1, b = 1.25, holes = 0
Bottom left: m = 5, n1 = 1, n2 = 0.2, n
3 = 0.6, a = 1, b = 1, holes = -0.5

See SuperShape3d and super_shape.

shape (2D half blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

shredlin.dll

Divides the plane into horizontal and
vertical strips. The width of each strip is
specified by xdistance and ydistance. Each
strip is then shrunk according to xwidth
and ywidth, which specifies the
proportion each strip will have (1 leaves it
unaffected, 0.5 halves the size, leaving
space between them). Negative values
work the same, but reverse each strip.

Top right: xdistance = 1, xwidth = 1,
ydistance = 0.5, ywidth = 0.75

Bottom right: xdistance = 0.5,
xwidth = 0.75, ydistance = 1, ywidth = 0.5

Bottom left: xdistance = 0.25, xwidth = -1,
ydistance = 1, ywidth = 1

shredlin (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

shredrad.dll

Divides the plane into n wedges, and
shrinks each according to width, which
specifies the proportion each wedge will
have (1 leaves it unaffected, 0.5 halves
the size, leaving space between them).
Negative values work the same, but
reverse each wedge.

Top right: n = 4, width = 0.75
Bottom right: n = 8, width = 0.5
Bottom left: n = 8, width = -0.8

Compare wedge.

shredrad (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

sineblur.dll

A circle, like blur, but with a shading
effect controlled by variable power. The
appearance is greatly influnced by the
background; the default of 1 works well
for dark backgrounds, but a somewhat
higher value (like 20, top right) is better
for light backgrounds. Very high values
will have low density in the center. Values
less than 1 will produce a smaller circle
with a fuzzy edge.

Top left: power = 1
Top right: power = 20
Bottom left: power = 0.5
Bottom right: power = 250

sineblur (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

sinusgrid.dll

First it maps the plane to a unit square
using a negative cosine function based on
the values of freqx (for horizontal) and
freqy (for vertical). Then it interpolates
between the original and the mapped
versions based on the values of ampx and
ampy, 0 meaning use the original and 1
meaning use the mapped.

The top right example has freqx = 0.5,
which folds the visible image on itself four
times (the left and right halves look the
same), with ampx = 1 to show the mapped
version horizontally; ampy is 0 so no
vertical mapping is done.

The bottom right example has freqx = 1, so
doubles the frequency, but ampx = 0.25 so
it only has a partial effect; ampy is again 0.

The bottom left example has large
frequencies but small amplitudes: ampx =
0.1, ampy = 0.2, freqx = 4, freqy = 2.

sinusgrid (2D, passes z)

sinusoidal (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Uses the sine function to map the plane
to a unit square, folding it on itself to do
so. The example uses lines to show how it
works: horizontal and vertical lines fold on
themselves; main diagonal lines become
pointy, and other diagonal lines curve.

A pre_ version is available as a plugin.

sinusoidal3d, pre_sinusoidal3d
(3D, transforms z)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

sinusoidal3d.dll

A 3D version of sinusoidal.

spher (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no yes

Spher.dll
A cross of linear and spherical; acts like
linear outside a circle the size of the
variation value and spherical inside it. The
example uses a variation value of 1, so
the circle in this case is the boundary
between the green and cyan rings.

Compare Glynnsim1, Glynnsim2,
Glynnsim3.

pitch=45 pitch=45

sinusoidal_linear (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

sinusoidal_linear.dll

Adds a vertical sine wave.

spherical (2D)

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Turns the plane inside-out. Points near
the center are moved away and points
far away are moved towards the center.

Pre_ and post_ versions are available as
plugins.

Spherical3D (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

Spherical3D.dll

A 3D version of spherical that sets z based
on the original z value and the distance
from the center. In the example, the
original is a plane with z = 0.5.

pitch=70 pitch=70

spherivoid (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no dll dll no no

spherivoid.dll

Inflates the 3D space by putting a
spherical “hole” in the middle with size
specified by radius. In the example, the
original is a plane with z = 0.5 and
radius = 1. (When z = 0, the middle is
blank.)

pitch=70 pitch=70

post/pre_spin_z (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

post_spin_z.dll, pre_spin_z.dll

Rotates the 3D space around the z axis
(like yaw, but only for a specific variation).
The variation value specifies how much to
rotate; effective values are from -2 to 2
(corresponding to -180° to 180°). In the
example, the value is 1 (90°).

Does NOT pass z.

pitch=70 pitch=70

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Maps rays extending from the center into
spirals. The example shows an overlay of
eight rays going different directions. For
clarity, the bottom examples show two of
them separately to show the spiral shape.
Points closest to the center in the original
are furthest from the center after the
transform.

The red line in the example looks
different from the others because it
straddles the x axis. The part above the
axis goes to the left, and the part below
the axis goes to the right.

spiral (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

SpirographVariationPlugin.dll

Plots an epitrochoid, a figure made by
placing a pen a distance c from the center
of a circle of size b rotating around a fixed
circle of size a, where c is actually two
variables c1 and c2. Make them equal for
an epitrochoid. Make one negative to plot
a hypotrochoid, where the moving circle
rotates around the inside of the fixed
circle instead of the outside. Variables
tmin and tmax control the path length,
and ymin and ymax control the pen
thickness.

Top left: a = 0.7, b = 0.23, c1 = 1, c2 = 1,
tmin = 0, tmax = 1000, ymin = 0, ymax = 0
Top right: a = 0.8, b = 0.3, c1 = 0.5,
c2 = 0.5, tmin = 0, tmax = 50,
ymin = -0.02, ymax = 0.02
Bottom right: a = 0.7, b = 0.3, c1 = 0.6,
c2 = -0.6, tmin = 0, tmax = 50,
ymin = -0.005, ymax = 0.005
Bottom left: a = 0.7, b = 0.23, c1 = 0.6,
c2 = -0.6, tmin = 0, tmax = 49.75,
ymin = 0, ymax = 0

Spirograph (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

split.dll

Splits the plane into vertical strips with a
size defined by xsize (higher values give
more strips), and flips every other strip
across the x axis. Also does the same with
horizontal strips defined by ysize.

Top left: xsize = 0.5, ysize = 0
Bottom left: xsize =0, ysize = 1
Bottom right: xsize = 3, ysize = 2

Don’t confuse with similarly named
variation splits.

split (2D)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

splits.dll

Splits the plane along the x and y axes,
shifting the quarters apart to leave a
vertical space of size x and a horizontal
space of size y. Example has x = 1 and y =
0.2.

Compare with separation. Don’t confuse
with similarly named variation split.

splits (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

square (2D blur)

SquareBlurVariationPlugin.dll

A square. The size is determined by the
variation value (1 here).

2.09 7X15B 7X16 jwf ch

no no no yes no

square3D (3D blur)

A cube.

pitch=60, yaw=30

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

squarical.dll

Maps the plane into a square outline with
corners at (2,0), (0,2), (-2,0), (0,-2) if the
variation value is 1; using other values will
make the result larger or smaller.

squarical (2D)

squarize (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

squarize.dll

Maps circles centered at the origin to
squares.

See circlize, which does the opposite.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

squish.dll

Repeats the plane power times radially as
julian does, then maps it to a distinctive
square pointy shape.

Top right: power = 2
Bottom right: power = 3
Bottom left: power = 8

squish (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

starblur.dll

A star, with variables to control the
number of points (power) and
proportional distance of the inner angles
(range). Negative values are allowed, and
can generate interesting shapes (see
examples).

Top left: power = 5, range = 0.4
Top right: power = 4, range = -0.7
Bottom left: power = 10, range = 0.25
Bottom right: power = -5, range = 1

starblur (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

stripes.dll

Divides the plane into stripes with width
1, then shrinks each according to space (0
won’t shrink at all, 1 will shrink the stripes
to lines). Then warps each of the stripes
based on warp.

Top right: space = 0.5, warp = 0
Bottom right: space = 0.1, warp = 2
Bottom left: space = 0.3, warp = -0.5

stripes (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

stwin.dll

Distorts the plane according to variable
distort. It gives the appearance of warping
the plane in the third dimension, but this
is a 2D only variation.

Top right: distort = 1
Bottom right: distort = -1
Bottom left: distort = 2

stwin (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

supershape.dll

Transforms the plane based on a formula
developed by botanist Johan Gielis to
describe shapes found in nature, known
as the superformula. Variable m is the
number of sections for the shape, and n1,
n2, and n3 control the shape.

The superformula has two other variables
a and b that stretch or shrink the result.
They are always set to 1 for this variation;
there is no way to adjust them. But this
variation does have two variables, rnd and
holes that further modify the shape.

Top right: m = 10, n1 = 0.4, n2 = 1, n3 = 1,
rnd = 0, holes = 0
Bottom right: m = 16, n1 = 2.5, n2 = 5,
n3 = 3, rnd = 0, holes = 0
Bottom left: m = 8, n1 = 1, n2 = 0.3,
n3 = 3, rnd = 0, holes = -0.3

See shape and SuperShape3d.

super_shape (2D)

2.09 7X15B 7X16 jwf ch

no dll dll yes no

SuperShape3d.dll
A 3D shape based on two superformula
instances (see super_shape for a basic
description). The first is for the xy plane,
and only generates an outline The second
is for the yz plane, and generates the
solid.

Variable rho sets the upper bound for xy
drawing; when m1 is an integer, the
optimal value is 𝜋2 ≈ 9.8696. Increase
when m1 has a fractional part. Variable
phi does the same for the yz drawing. A
typical value is 𝜋2/4 ≈ 2.4674, which fills
a quarter of the shape. Adjust as needed.

In all the examples, rho = 9.8696,
phi = 2.4674, and a1, a2, b1, and b2 = 1.
Top: m1 = 8, n1_1 = 1, n2_1 = 0.3,
n3_1 = 0.3, m2 = 5, n1_2 = 0.4, n2_2 = 1,
n2_3 = 1
Bottom: m1 = 12, n1_1 = 15, n2_1 = 20,
n3_1 = 7, m2 = 4, n1_2 = 4, n2_2 = 7,
n2_3 = 7

See shape and super_shape.

SuperShape3d (3D blur)

pitch= 0 pitch=60

pitch= 0 pitch=60

2.09 7X15B 7X16 jwf ch

yes yes yes yes yes

Twists the plane counter-clockwise,
mapping wedges to spirals.

See swirl2.

swirl (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

swirl2.dll

Twists the plane clockwise with variables
to control the effect: twistamount is how
much to twist; example uses 0.1, use
1/π=0.31831 for same amount as swirl
(but opposite direction). radius specifies
size; use 1 (shown) to keep original size.
centerx and centery set the center of the
effect.

swirl2 (2D)

tangent (2D)

2.09 7X15B 7X16 jwf ch

no no no yes yes

Maps the plane to a shape based on the
tangent function, but it’s probably easier
to think of this as similar to sinusoidal,
except it maps to an hourglass shape
instead of a square.

Although there is no tangent plugin, there
is a Z_tangent plugin named Ztangent.dll.
It has variables; set them all to 1 to mimic
tangent.

tangent3D (3D, sets z)

2.09 7X15B 7X16 jwf ch

no no no yes no

Like tangent, but also sets z. The sample
shows an edge-on view to show the 3D
shape. With pitch = 0, it is the same as
tangent.

pitch= 90 pitch=90

2.09 7X15B 7X16 jwf ch

no no no yes no

Adds text to a fractal. Variables allow
specifying the text string, font, size, and
offset (location).

text_wf (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

trade.dll

Takes one circle of radius r1 with its left
edge distance d1 to the right of the origin
and another circle of radius r2 with its
right edge distance d2 to the left of the
origin, and trades them, scaling as
needed, and flipping right and left.

Top right: r1 = 0.5, d1 = 0.5, r2 = 0.5,
d2 = 0.5
Bottom right: r1 = 1, d1 = 0.5, r2 = 0.5,
d2 = 1.25
Bottom left: r1 = 0.75, d1 = 0, r2 = 1,
d2 = 0.5

trade (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

tri_boarders2 (2D)

Tri_boarders2.dll
Divide the flame into hexagons, and
make a copy of each. Shrink one copy
and keep in the middle. Poke a
hexagonal hole in the other and
expand it to make a frame around the
first. The sample has radius = 0.5 and
width = 0.5.

See boarders2 and xtrb.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

Truchet.dll

Crops the plane to a random Truchet
tiling. The plane is divided into square
tiles with each face either connected to
one, or both adjacent faces or teminated
in a point. The squares in the sample
match the truchet squares. Set exponent
to 1 for a straight line (top left), 2 for a
quarter circle (bottom left), or other
values between 0.008 and 2 for other
shapes (bottom right uses 0.5).

The width of the lines is determined by
arc_width, ranging from 0.001 (barely
visible) to 1 (full size). Change seed to get
a different random pattern.

Top left: exponent = 1, arc_width = 0.5,
seed = 35
Bottom left: exponent = 2,
arc_width = 0.5, seed = 70
Bottom right: exponent = 0.5,
arc_width = 0.33, seed = 12.34

Truchet (2D)

twintrian, twintrian2 (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

twintrian2.dll

The built-in version is twintrian; the
plugin version is twintrian2. Both work
the same. It maps dots to arcs, but not in
a very predictable way. For points close to
the center, the result tends to have two
branches as shown. Points on the left
map to the top; points on the right to the
bottom.

twoface (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

twoface.dll

A combination of linear on the left and
spherical on the right.

unpolar (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

unpolar.dll

Wraps the plane around a horizontal
cylinder, then views it through the end.

In the first example, the vertical lines are
infinite and map to rays emanating from
the center due to the wrapping. The top
of the original maps to the center.

The second example is more complex, but
better shows how unpolar works. The
infinite horizontal lines are slanted
slightly, so when wrapped around the
cylinder they spiral around. These spirals
can be seen when the cylinder is view
through the end.

See foci.

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

voron.dll

Maps the plane to a random voronoi
tessellation. A set of random points is
chosen, and the plane is divided into
regions based on the nearest random
point. Each region is scaled by K; if less
than 1, boundaries between the regions
are seen; if greater, the regions overlap.

Variable Step determines the spacing of
the random points, and so the size of the
regions. The process is repeated Num
times, resulting in finer details (but much
slower performance) as Num increases.

Top right: K = 0.75, Step = 0.25, Num = 1
Bottom right: K = 0.75, Step = 1, Num = 25
Bottom left: K = 1.2, Step = 0.5, Num = 2

voron (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

w.dll

Contorts the inner part of the plane to
various shapes (hypergon, star, and
supershape shown; lituus and combos not
shown). The contorted part is rotated
angle radians, though that is not apparent
in the samples due to the starting point
(chosen to be consistent with variations x,
y, and z); angle also controls the amount
of the effect; the values for the samples
are chosen to maximize the effect.

Top right: angle = 0.785 (45°),
hypergon = 1.5, hypergon_n = 4,
hypergon_r = 0.5
Bottom right: angle = 0.628 (36°),
star = 1.5, star_n = 5, star_slope = 0.5
Bottom left: angle = 1.05 (60°),
super = 1.5, super_m = 6, super_n1 = 0.75,
super_n2 = 1, super_n3 = 3

See also x, y, and z.

w (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes no

WaffleVariationPlugin.dll

A square shape with cross-hatching to
give the appearance of a waffle. Note that
the cross-hatching is not apparent with all
colors. Variables control the number of
divisions and thickness of the lines.

Top left: slices = 5, xthickness = 0.75,
ythickness = 0.25, rotation = 0
Top right: slices = 3, xthickness = 0.5,
ythickness = 0.5, rotation = 0
Bottom right: slices = 3, xthickness = 1,
ythickness = 1, rotation = 0
Bottom left: slices = 6, xthickness = 0.2,
ythickness = 0.5, rotation = 1.57

waffle (2D blur)

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

waves2.dll

Creates a wave effect independently on x
and y applied equally through the plane.
Variables freqx and scalex specify the
frequency and scale for x, and freqy and
scaley specify the frequency and scale for
y.

Top right: freqx = 0, freqy = 4,
scaley = 0.25
Bottom right: freqx = 4, scalex = 0.1,
freqy = 4, scaley = 0.25
Bottom left: freqx = 3, scalex = 0.5,
freqy = 2, scaley = 0.5

The version built in to 7X16 has additional
freqz and scalez variables.

Supercedes waves.
Compare auger, waves2b, wavesn.

waves2 (2D, but 7X16 is 3D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

waves2b.dll

Creates a wave effect independently on x
and y like waves2, but with more
variables. The wave is raised to the pwx
and pwy power, distorting the wave (top
right). The scale can be different at the
center (scalex and scaley) and edges
(scaleinfx and scaleinfy); the bottom right
example decreases the scale at the edges
(opposite of auger). Compare top and
bottom right with waves2, top right.

Bottom left example mixes all the
options.

Top right: freqx = 0, freqy = 4, pwy = 2,
scaley = 0.75, scaleinfy = 0.75
Bottom right: freqx = 0, freqy = 4, pwy = 1,
scaley = 1, scaleinfy = 0.1
Bottom left: freqx = 2, freqy = 3, pwx = 3,
pwy = 0.25, scalex = 1, scaleinfx = 0.5,
scaley = 0.5, scaleinfy = 0

Compare auger, waves2, wavesn

waves2b (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

wavesN.dll

First does an optional radial replication
like julian (variable power), then adds a
wave effect independently on x and y
with frequencies freqx and freqy, starting
with scales scalex and scaley at the center
and changing outward by incx and incy.

Top right: freqx = 0, freqy = 4, scalex = 0,
scaley = 1, incx = 0, incy = -1, power = 1
Bottom right: freqx = 6, freqy = 4, scalex =
0.5, scaley = -0.5, incx = -0.5, incy = 0.5,
power = 1
Bottom left: freqx = 5, freqy = 4, scalex =
0.5, scaley = 0.5, incx = -1.5, incy = 0.5,
power = 2

Compare auger, waves2b, wavesn.

wavesn (2D)

wdisc (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no yes

wdisc.dll
Morphs the flame into a unit circle by
turning wedges into arcs. Unlike disc, this
one doesn’t overlap. Wedges in the top
half map to counter-clockwise arcs and
wedges in the bottom half map to
clockwise arcs in the corresponding half
of the result.

Compare disc, idisc.

2.09 7X15B 7X16 jwf ch

dll dll yes yes yes

wedge.dll

Divides the plane into count wedges and
squeezes each by angle radians. If angle is
positive, gaps will be left; if negative, the
wedges will be expanded and overlap
(bottom left). Then each wedge is moved
outward a distance specified by hole to
leave a hole in the middle (bottom right).
Negative values are allowed, which will
make the wedges overlap in the center.

If swirl is non-zero, an effect similar to
swirl will be added (see the swirl
variation).

Top right: angle = 0.524 (30°), hole = 0,
count = 4, swirl = 0
Bottom right: angle = 0.262 (15°),
hole = 0.4, count = 8, swirl = 0
Bottom left: angle = - 0.524 (-30°),
hole = 0, count = 4, swirl = 0

Compare shredrad. There is also a plugin
wedge_fl that allows non-integer values
for count.

wedge (2D)

wedge_julia (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

wedge_julia.dll

A combination of julian and wedge.
Example shows angle = 0.524 (30°),
count = 4, power = 2, dist = 1.

There is also a plugin wedge_juliaFL that
allows non-integer values for count.

wedge_sph (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

wedge_sph.dll

A combination of spherical and wedge.
Example shows angle = 0.524 (30°), hole =
0, count = 4, swirl = 0.

There is also a plugin wedge_sphFL that
allows non-integer values for count.

2.09 7X15B 7X16 jwf ch

dll dll dll yes yes

whorl.dll

Divides the plane into two parts with a
circle the size of the variation value, and
rotates the inside and outside
independently based on the variables
inside and outside. The rotation is
weakest at the center and outside, and
gets stronger near the boundary. The top
right example has small values for both
variables to demonstrate this effect.

Top right: inside = 0.1, outside = 0.1
Bottom right: inside = 0.4, outside = -1
Bottom left: inside = -1, outside = 0.6

whorl (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

x.dll

Contorts the plane to various shapes
(hypergon, star, and supershape shown;
lituus and combos not shown). The effect
is strongest at the center and diminishes
outwards (contrast with variation z, which
does not diminish).

Top right: hypergon = 0.5,
hypergon_n = 4, hypergon_r = 0.5
Bottom right: star = 0.5, star_n = 5,
star_slope = 0.5
Bottom left: super = 0.5, super_m = 6,
super_n1 = 0.75, super_n2 = 1,
super_n3 = 3

See also w, y, and z.

x (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

xheart.dll

Maps the plane to an ellipse with the
variation value as the width and
(ratio+3)/2 as the height, and rotates it
according to angle (-2 for a vertical ellipse
(no rotation) to 2 for a horizontal one). It
then flips the left half vertically, resulting
in a heart shape if the ellipse is tilted.

Top right: angle = 0 (45° rotation),
ratio = 1 (height twice the width)
Bottom right: angle = -0.667 (30°
rotation), ratio = 3 (height three times
width)
Bottom left: angle = 1.2 (72°), ratio = 2
(height 2.5 times width)

xheart (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll yes dll

xtrb.dll

Extends tri_boarders2, adding a julian
function (variables power and dist; see
top right sample), and variables a and b to
control the angles of the hexagon shapes
(set both to 1 for normal hexagons).

Top right: power = 1, radius = 0.5,
width = 0.5, dist = 1, a = 1, b = 1
Bottom right: power = 1, radius = 0.25,
width = 0.75, dist = 1, a = 1.25, b = 1
Bottom left: power = 1, radius = 0.25,
width = 0.75, dist = 1, a = 1, b = 0.75

See tri_boarders2

xtrb (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

y.dll

Contorts the plane to various shapes
(hypergon, star, and supershape shown;
lituus and combos not shown), then turns
it inside-out as spherical does.

Top right: hypergon = 0.75,
hypergon_n = 4, hypergon_r = 0.5
Bottom right: star = 0.75, star_n = 5,
star_slope = 0.5
Bottom left: super = 0.75, super_m = 6,
super_n1 = 0.75, super_n2 = 1,
super_n3 = 3

See also w, x, and z.

y (2D)

2.09 7X15B 7X16 jwf ch

dll dll dll no dll

z.dll

Contorts the plane to various shapes
(hypergon, star, and supershape shown;
lituus and combos not shown). The effect
is equal from the center outwards
(contrast with variation x, which
diminishes further from the center).

Top right: hypergon = 0.5,
hypergon_n = 4, hypergon_r = 0.5
Bottom right: star = 0.5, star_n = 5,
star_slope = 0.5
Bottom left: super = 0.5, super_m = 6,
super_n1 = 0.75, super_n2 = 1,
super_n3 = 3

See also w, x, and y.

z (2D)

zblur (3D blur)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

A gaussian blur for the z axis only; no
effect on x or y. The sample includes
gaussian_blur to provide x-y input and
prevent it from being a simple vertical
line. The view is from the side; the z axis is
vertical. (The sample was rendered by
JWildfire; the various Apophysis versions
render it differently, probably due to
random number generator variations.)

zcone (3D, transforms z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Adds the x-y distance of each point to z,
thus transforming a plane into a cone.
Shown here is the effect on a sphere,
viewed from the side.

pitch=90

zscale, pre_zscale (3D, transforms
z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Multiplies the z value of each point by the
variation value, so using zscale with value
1 will simply pass z if the other variations
don’t already. In the example, zscale is 1,
but linear3D with value 1 is also used,
which adds an additional zscale of 1,
making a total zscale of 2, so doubling the
height (or depth) of each point. pitch=90

ztranslate, pre_ztranslate (3D,
transforms z)

2.09 7X15B 7X16 jwf ch

no yes yes yes no

Adds the variation value to the z value of
each point. In the example, the value of
ztranslate is 1, so the shape is moved up
by 1 unit.

pitch=90

pitch=90

pitch=90

pitch=90

pitch=90

